New Cytotoxic Butanolides from Litsea acutivena

Hsing-I Cheng,[†] Wei-Yu Lin,[†] Chang-Yih Duh,[‡] Kuo-Hsiung Lee,[§] Ian-Lih Tsai,[†] and Ih-Sheng Chen^{*,†}

Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China, Institute of Marine Resources, National Sun Yat-sen University, Kaohsiung, Taiwan, Republic of China, and Natural Products Laboratory, Division of Medicinal Chemistry and Natural Products, School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599

Received May 7, 2001

Six new compounds, including one nor-neolignan, dehydroxymethylailanthoidol (1), and five butanolides, litseakolide D (2), litseakolide E (3), litseakolide F (4), litseakolide G (5), and isolincomolide D (6), were isolated from the leaves of *Litsea acutivena*. Their structures were elucidated from spectral analyses. The butanolides (2-6) showed significant cytotoxic activity against P-388, A549, and HT-29 cell lines in vitro.

Litsea acutivena Hayata (Lauraceae) is an evergreen tree, distributed in southern China, Hainan Island, Indochina, and Taiwan.¹ Only one alkaloid, laurolitsine, has been reported from the wood of this species.² As an extension of our continuing studies on the cytotoxic constituents of Formosan plants, we have screened about 700 species for in vitro cytotoxicity, and *L. acutivena* was shown to be one of the active species. Investigation of the CHCl₃soluble fraction of the leaves of this plant led to the isolation of six new compounds, namely, dehydroxymethylailanthoidol (1), litseakolide D (2), litseakolide E (3), litseakolide F (4), litseakolide G (5), and isolincomolide D (6). The isolation, structural elucidation, and cytotoxicity of these compounds are described herein.

Results and Discussion

Dehydroxymethylailanthoidol (1) was isolated as orange prisms, and the molecular formula, C₁₈H₁₆O₄, was determined by EIMS ($[M]^+$, m/z 296) and HR mass spectrometry. UV absorption bands at 313, 272, and 231 nm demonstrated that 1 was structurally related to a 2-phenyl-5trans-ethenylbenzofuran-type compound.³ The IR spectrum showed a hydroxyl absorption at 3365 cm⁻¹. The ¹H NMR spectrum for 1 was identical with that of the nor-neolignan, ailanthoidol,³ except an ethenyl group [δ 6.79 (1H, dd, J= 17.6, 10.8 Hz), 5.72 (1H, d, J = 17.6, 0.8 Hz), 5.23 (1H, d, J = 10.8, 0.8 Hz)] in **1** was in place of an (*E*)-3-hydroxy-1-propenyl group [δ 6.68 (1H, d, J = 15.8 Hz), 4.35 (2H, d, J = 5.7 Hz), 1.43 (1H, br s, OH)] in the C-5 position of the A-ring. Thus, the structure of 1 was elucidated as 2-(4-hydroxy-3-methoxyphenyl)-5-ethenyl-7-methoxybenzofuran, which was further confirmed by a negative Gibbs test and NOESY experiments (Figure 1). The isolation of **1** is the first report from a natural source, although it was mentioned as a pyrolytic product from humus.⁴

Litseakolide D (2) was isolated as a colorless oil. The molecular formula was determined to be $C_{16}H_{28}O_4$ by FABMS ([M + H]⁺, *m*/*z* 285) and HRFAB mass spectrometry. The IR spectrum showed absorption bands for a hydroxyl group at 3444 cm⁻¹ and an α , β -unsaturated- γ -lactone at 1763 and 1679 cm⁻¹. The ¹H NMR spectrum of 2 was similar to that of litsenolide C_2 ,^{5,6} indicating the same

6 $R_1 = H$, $R_2 = (CH_2)_{10}CH_3$

 β -hydroxy- γ -methyl- α , β -unsaturated- γ -lactone structure and the same *E* geometry of the trisubstituted double bond [δ 6.95 (1H, td, J = 8.0, 2.4 Hz, H-6)]. However, a methoxy group [δ 3.49 (3H, s)]⁷ in **2** replaced the H-4 [δ 4.50 (1H, qd, J = 6.4, 2.0 Hz)] in litsenolide C₂, and the side chain was four methylene units shorter than that of litsenolide C₂. The absolute stereochemistry at C-3 was determined

10.1021/np0102298 CCC: \$20.00 © 2001 American Chemical Society and American Society of Pharmacognosy Published on Web 11/08/2001

^{*} To whom correspondence should be addressed. Tel: 886-7-3121101 ext. 2191. Fax: (886)-7-3210683. E-mail: m635013@kmu.edu.tw.

[†] Kaohsiung Medical University.

[‡] National Sun Yat-sen University.

[§] University of North Carolina.

Figure 1. NOESY correlations of compound 1.

 $\begin{array}{l} \textbf{4} \ R_1 = (CH_2)_8 CH_3, \ R_2 = H \\ \textbf{5} \ R_1 = H, \ R_2 = (CH_2)_8 CH_3 \end{array}$

Figure 2. NOESY correlations of compounds **4** and **5**.

to be 3*S* based on the correlation between the $[\alpha]_D$ value $[-73.3^{\circ}$ (*c* 0.13, CHCl₃)] and the known configuration at C-3 for 2-alkylidene-3-hydroxy-4-methylbutanolide derivatives.^{5,6,8–10} The stereochemistry of C-4 was determined to be 4*R* from the NOESY spectrum (Figure 2), which showed no correlation between the H-3 and methoxyl signals, indicating that H-3 and methoxyl group are *trans*. From the above evidence, the structure of litseakolide D was represented by the formula **2**, which was further confirmed by ¹³C NMR, DEPT, and HMQC experiments.

Litseakolide E (3) was isolated as a colorless oil. The FABMS afforded the positive ion $[M + H]^+$ at m/z 285, implying a molecular formula of C₁₆H₂₈O₄. The IR spectrum showed absorption bands for a hydroxyl group at 3442 cm⁻¹ and an α,β -unsaturated- γ -lactone at 1766 and 1679 cm⁻¹. From the spectral evidence, compound **3** was similar to **2** and has the same β -hydroxy- γ -methyl- α , β -unsaturated- γ lactone structure. The major difference was the Z-form geometry of the trisubstituted double bond [δ 6.45 (1H, td, J = 8.0, 2.4 Hz, H-6)]. The $[\alpha]_D$ value $[-83.2^{\circ} (c \ 0.20, c)]$ CHCl₃)] once again indicated the stereochemistry of C-3 as 3S, and the NOESY spectrum, which also showed no correlation between H-3 and methoxyl signals, suggested the R configuration at C-4. From the above data, the structure of litseakolide E was represented by the formula 3, which was further confirmed by ¹³C NMR, DEPT, COSY, and HETCOR experiments.

Litseakolide F (4) was isolated as a colorless oil. The molecular formula was determined to be C₁₆H₂₈O₄ by FABMS ($[M + H]^+$, m/z 285) and HRFAB mass spectrometry. The IR spectrum showed absorption bands for a hydroxyl group at 3431 cm⁻¹ and an α,β -unsaturated- γ lactone at 1746 and 1679 cm⁻¹. The ¹H NMR spectrum data were similar to that of **2** and showed the same β -hydroxy- γ -methyl- α , β -unsaturated- γ -lactone structure and the same *E* geometry of the trisubstituted double bond [δ 6.95 (1H, td, J = 8.0, 1.2 Hz, H-6)]. The major difference was the positive $[\alpha]_D$ value [+54.3° (*c* 0.49, CHCl₃)], so the stereochemistry of C-3 was determined to be 3R.7 The NOESY spectrum showed correlations between the H-3 and methoxyl signals, supporting the 4R stereochemistry (Figure 2). Despite the long chain, the chemical shifts of signals on 4 are the same as those on (2E,3R,4R)-2-(11-dodecenylidene)-3-hydroxy-4-methoxy-4-methylbutanolide.⁸ From the above observations, the structure of litseakolide F was represented by the formula **4** and was further confirmed by ¹³C NMR, DEPT, COSY, and HETCOR experiments.

Litseakolide G (5) was isolated as a colorless oil, with molecular formula C16H28O4, as established by FABMS ([M + H]⁺, *m*/*z* 285) and HRFAB mass spectrometry. The IR spectrum showed absorption bands for a hydroxyl group at 3439 cm⁻¹ and an α,β -unsaturated- γ -lactone at 1753 and 1672 cm⁻¹. The ¹H NMR spectrum data were similar to that of **3**; thus **5** has the same β -hydroxy- γ -methyl- α , β unsaturated- γ -lactone structure and the same Z geometry of the trisubstituted double bond [δ 6.56 (1H, td, J = 8.0, 1.2 Hz, H-6)]. Again, the major difference was in the positive $[\alpha]_D$ value $[+77.4^\circ (c \, 0.09, \text{CHCl}_3)]$, suggesting the 3R stereochemistry of C-3.8 The stereochemistry of C-4 was determined to be 4*R* from the NOESY spectrum (Figure 2), which showed the expected correlations between the H-3 and methoxyl signals. Thus, the structure of litseakolide G was represented by formula 5 and was further confirmed by ¹³C NMR, DEPT, COSY, and HETCOR experiments.

Isolincomolide D (**6**) was isolated as a colorless oil, with molecular formula $C_{17}H_{28}O_3$, determined by FABMS ([M + 1]⁺, m/z 281) and HRFAB mass spectrometry. The IR spectrum showed absorption bands for a hydroxyl group at 3449 cm⁻¹ and an α,β -unsaturated- γ -lactone at 1781 and 1679 cm⁻¹. The [α]_D value [-49.5° (c 0.20, CHCl₃)] indicated the 3*S* configuration.⁸ The ¹H NMR spectrum data were similar to that of lancifolide,¹¹ with the same β -hydroxy- γ -methylene- α,β -unsaturated- γ -lactone structure and *Z* trisubstituted double bond [δ 6.69 (1H, td, J = 8.0, 2.0 Hz, H-6)]. Thus, the structure of isolincomolide D was represented by formula **6** and was further confirmed by ¹³C NMR, DEPT, COSY, and HETCOR experiments.

The cytotoxic activity of compounds 1-6 were tested in vitro against P-388, A549, and HT-29 cell lines (Table 3). Compounds 2-6 showed good cytotoxicity against all three cell lines. With a fixed configuration of 3S, 4R, the Econfigured isomer 2 showed stronger cytotoxicity than the *Z*-form butanolide **3**, and with the 3*R*,4*R* configuration, the Z-isomer 5 showed stronger cytotoxicity than the E butanolide 4. In comparison of butanolides 2 and 4, which both contain an E-configured double bond, 2 was more cytotoxic against P-388 and HT-29 cell lines, but less cytotoxic against the A549 cell line. With the Z-formconfigured isomers **3** and **5**, compound **5** was more cytotoxic against all three cell lines. Compared with lincomolide D (*E*-form),¹² **6** was less cytotoxic against the P-388 cell line, but more cytotoxic against the HT-29 and A549 cell lines. The cytotoxicity of these butanolides is likely attributed to the presence of the α , β -unsaturated lactone, which can undergo Michael addition with biological nucleophiles. Naturally occurring sesquiterpene lactones, such as helenalin, also possess a O=C-C=C system, which has been linked to their cytotoxic activity.^{13–15} No cytotoxic selectivity was observed for compounds 2-6, as can be observed in Table 3.

Experimental Section

General Experimental Procedures. Melting points were determined with a YANACO micro-melting point apparatus and are uncorrected. Optical rotations were measured using a JASCO DIP-370 polarimeter in CHCl₃. IR spectra were taken on a Hitachi 260-30 (KBr and neat) spectrophotometer. UV spectra were obtained on a JASCO UV-240 spectrophotometer. MS spectra were recorded on a VG Biotech Quattro 5022 spectrometer. HRMS were recorded on a JEOL JMX-HX 110 mass spectrometer. ¹H NMR and ¹³C NMR spectra were measured on either a Varian Unity Plus 400 or JEOL GSX-600 spectrometer and are given in ppm (δ) downfield from

Table 1. ¹ H	H NMR	Data for	Butanolides 2-	5 (40)) MHz,	CDCl ₃)
-------------------------	-------	----------	----------------	--------	--------	---------------------

Н	2	3	4	5
3	4.63	4.43	4.52	4.40
	(1H, br d, J = 8.8 Hz)	(1H, br d, J = 8.8 Hz)	(1H, br s)	(1H, br s)
5	1.62	1.62	1.61	1.55
	(3H, s)	(3H, s)	(3H, s)	(3H, s)
6	6.95	6.45	6.95	6.56
	(1H, td, J = 8.0, 2.4 Hz)	(1H, td, J = 8.0, 2.4 Hz)	(1H, td, J = 8.0, 1.2 Hz)	(1H, td, J = 8.0, 1.2 Hz)
7	2.46	2.70	2.38	2.75
	(2H, m)	(2H, m)	(2H, m)	(2H, m)
8	1.48	1.46	1.52	1.47
	(2H, m)	(2H, m)	(2H, m)	(2H, m)
9 - 14	1.26	1.26	1.27	1.26
	(12H, br s)	(12H, br s)	(12H, br s)	(12H, br s)
15	0.88	0.88	0.88	0.88
	(3H, t, J = 6.8 Hz)			
OCH_3	3.49	3.44	3.37	3.40
	(3H, s)	(3H, s)	(3H, s)	(3H, s)
OH	2.84	2.53	2.61	2.09
	(1H, br d, J = 8.8 Hz)	(1H, br d, J = 8.8 Hz)	(1H, br s)	(1H, br s)

Table 2. ¹³C NMR Data for Butanolides **2**–**5** (100 MHz, CDCl₃)

С		2		3		4		5
1		168.1		166.9		169.3		167.3
2		128.4		128.1		130.0		129.0
3		74.1		75.9		72.4		75.8
4		103.9		103.9		109.7		108.8
5		19.9		19.1		16.0		16.3
6		147.9		147.3		148.4		150.3
7		29.47		27.74		29.78		28.04
8		28.52		28.90		28.34		28.77
9		[28.87		[29.24		[29.22		[29.22
10	$C_{1} = C_{1}$	29.27	C ₁ -C ₁	29.30	$C_9 - C_{12}$	{ 29.31	C-C-C-	29.25
11	$C_9 - C_{12}$	29.33	$C_9 - C_{12}$	29.42		l29.42	$C_9 - C_{12}$	29.37
12		L29.37		L29.53				L29.47
13		31.9		31.9		31.8		31.8
14		22.7		22.7		22.6		22.6
15		14.1		14.1		14.0		14.1
OCH_3		50.7		50.3		50.2		50.4

Table 3. Cytotoxicity of Compounds 1-6

	$ED_{50} (\mu g m L^{-1})$			
compound	P-388	A549	HT-29	
dehydroxymethylailanthoidol (1)	>50	>50	>50	
litseakolide D (2)	1.73	2.85	2.00	
litseakolide E (3)	2.94	4.89	3.69	
litseakolide F (4)	2.04	2.01	4.39	
litseakolide G (5)	0.97	1.94	2.73	
isolincomolide D (6)	2.97	2.90	2.11	
mithramycin ^a	0.06	0.07	0.08	

^a Positive control

internal TMS. Silica gel 60 (Merck 70-230 mesh, 230–400 mesh, ASTM) was used for CC and silica gel 60 F_{254} (Merck) for TLC.

Plant Material. Leaves of *L. acutivena* Hayata were collected from Li-Long mountain, Pintung county, Taiwan, in September 1999. A voucher specimen (no. Chen 6096) is deposited in the Herbarium of the School of Pharmacy, Kaohsiung Medical University, Taiwan, Republic of China.

Extraction and Isolation. Dried leaves (8.7 kg) were extracted with MeOH and concentrated in vacuo to leave a brownish fluid. The MeOH extract was partitioned between CHCl₃ and H₂O (1:1). The H₂O-soluble fraction was further partitioned between H₂O and *n*-BuOH (1:1) to afford a H₂O fraction (fraction D, 390 g) and an *n*-BuOH fraction (fraction C, 250 g). The CHCl₃-soluble fraction was partitioned between 90% aqueous MeOH and *n*-hexane (1:1), giving an *n*-hexane fraction (fraction B, 150 g) and a CHCl₃ fraction (fraction A, 180 g). A part of fraction A (100 g) was chromatographed over Si gel, eluting with a CHCl₃-MeOH gradient, to obtain 15 fractions (A1-A15). Fraction A5 (4.34 g, CHCl₃-MeOH, 100: 1) was resubjected to Si gel chromatography, eluting with

n-hexanes-EtOAc (50:1) enriched gradually with EtOAc to obtain 24 fractions (A5-1-A5-24). Fraction A5-16 (59.5 mg, *n*-hexanes-EtOAc, 10:1) was resubjected to Si gel CC and purified by preparative TLC (CHCl₃-EtOAc, 15:1) to yield **1** (1.1 mg), **2** (2.2 mg), and **3** (3.1 mg). Fraction A7 (10.8 g, CHCl₃-MeOH, 100:1) was resubjected to Si gel, eluting with *n*-hexanes-EtOAc (50:1) enriched gradually with EtOAc to obtain 28 fractions (A7-1-A7-28). Fraction A7-8 (1.38 g, *n*-hexanes-EtOAc, 10:1) was resubjected to Si gel CC and purified by preparative TLC (CHCl₃-EtOAc, 50:1) to yield **6** (4.1 mg). Fraction A7-13 (0.96 g, *n*-hexanes-EtOAc, 10:1) was resubjected to Si gel CC and purified by preparative TLC (CHCl₃-EtOAc, 50:1) to yield **6** (2HCl₃-EtOAc, 50:1) to yield **4** (24.4 mg) and **5** (8.2 mg).

Method for Cytotoxicity Assay. P-388 cells were kindly provided by Prof. J. M. Pezzuto, University of Illinois at Chicago; A549 (human lung adenocarcinoma) and HT-29 (human colon carcinoma) were purchased from American Type Culture Collection.

P-388 cells were cultured in Fisher's medium supplemented with 10% heat-inactivated (56 °C for 30 min) fetal calf serum (FCS). A549 cells were cultured in Eagle Minimum Essential medium (EMEM) containing Earle's salts and supplemented with 0.1 mM nonessential amino acids and 10% heat-inactivated FCS. HT-29 cells were maintained in Rosewell Park Memorial Institute (RPMI) 1640 medium containing 10% heat-inactivated FCS. All cell lines were maintained in an incubator at 37 °C in humidified air containing 5% CO₂.

The cytotoxic activities of compounds against P-388, A549, and HT-29 were assayed by a modification of the MTT [3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide] colorimetric method.¹⁶ For P-388 cells, 200 μ L cultures were established at 1500 cells/well in 96-well tissue culture plates (Falcon). Compounds were dispensed to established cultures

at eight concentrations in triplicate. After 3 days of incubation, P-388 cells were enumerated with MTT.

To measure the cytotoxic activities of purified compounds against A549 and HT-29 cells, each cell line was initiated at 1000 cells/well in 96-well microtiter plates. Eight concentrations (triplicate) of test compounds encompassing a 128-fold range were added to each cell line. A549 and HT-29 cells were enumerated using MTT after exposure to test compounds for 6 days, respectively. Fifty microliters of 1 mg/mL MTT was added to each well, and plates were incubated at 37 °C for a further 5 h. Formazan crystals were redissolved in DMSO (E. Merck) for 10 min with shaking, and the plate was read immediately on a microtiter plate reader (Dynatech) at a wavelength of 540 nm. The ED₅₀ was defined as the concentration of the test compound resulting in a 50% reduction of absorbance compared to untreated cells in the MTT assay.

Dehydroxymethylailanthoidol (1): orange prisms (MeOH); mp 186–187 °C; UV (EtOH) λ_{max} (log ϵ) 313 (3.67), 272 (3.64), 231 (3.68) nm; IR (KBr) ν_{max} 3365 (OH) cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 4.00 (3H, s, OMe-3'), 4.07 (3H, s, OMe-7), 5.23 (1H, d, J = 10.8, 0.8 Hz, H-9a), 5.72 (1H, d, J = 17.6, 0.8 Hz, H-9b), 5.76 (1H, br s, OH-4'), 6.79 (1H, dd, J= 17.6, 10.8 Hz, H-8), 6.85 (1H, s, H-3), 6.89 (1H, d, J = 1.6 Hz, H-6), 6.98 (1H, d, J = 8.0 Hz, H-5'), 7.17 (1H, d, J = 1.6 Hz, H-4), 7.37 (1H, d, J = 2.0 Hz, H-2'), 7.40 (1H, dd, J = 8.0, 2.0Hz, H-6'); EIMS m/z 296 [M]+ (100); HREIMS m/z 296.1046 (calcd for C₁₈H₁₆O₄, 296.1049).

Litseakolide D (2): colorless oil; $[\alpha]^{25}_{D} - 73.3^{\circ}$ (*c* 0.13, CHCl₃); UV (EtOH) λ_{max} (log ϵ) 221(3.08) nm; IR (neat) ν_{max} 3444 (OH), 1763, 1679 (α,β -unsaturated- γ -lactone) cm⁻¹; ¹H NMR, Table 1; ¹³C NMR, Table 2; FABMS m/z 285 [M + H]⁺ (72); HRFABMS m/z 285.2064 (calcd for C₁₆H₂₉O₄, 285.2066).

Litseakolide E (3): colorless oil; $[\alpha]^{25}_{D}$ -83.2° (*c* 0.20, CHCl₃); UV (EtOH) λ_{max} (log ϵ) 221(3.24) nm; IR (neat) ν_{max} 3442 (OH), 1766, 1679 (α,β -unsaturated- γ -lactone) cm⁻¹; ¹H NMR, Table 1; ¹³C NMR, Table 2; FABMS m/z 285 [M + H]⁺ (24)

Litseakolide F (4): colorless oil; $[\alpha]^{25}_{D}$ +54.3° (*c* 0.49, CHCl₃); UV (EtOH) λ_{max} (log ϵ) 220(3.44) nm; IR (neat) ν_{max} 3431 (OH), 1746, 1679 (α , β -unsaturated- γ -lactone) cm⁻¹; ¹H NMR, Table 1; ¹³C NMR, Table 2; FABMS *m*/*z* 285 [M + H]⁺ (100); HRFABMS m/z 285.2061 (calcd for C16H29O4, 285.2066).

Litseakolide G (5): colorless oil; $[\alpha]^{25}_{D}$ +77.4° (*c* 0.09, CHCl₃); UV (EtOH) λ_{max} (log ϵ) 221(3.37) nm; IR (neat) ν_{max} 3439 (OH), 1753, 1672 (α , β -unsaturated- γ -lactone) cm⁻¹; ¹H NMR, Table 1; ¹³C NMR, Table 2; FABMS *m*/*z* 285 [M + H]⁺ (91); HRFABMS *m*/*z* 285.2057 (calcd for C₁₆H₂₉O₄, 285.2065).

Isolicomolide D (6): colorless oil; $[\alpha]^{25}_{D}$ -49.5° (*c* 0.20, CHCl₃); UV (EtOH) λ_{max} (log ϵ) 226(3.64) nm; IR (neat) ν_{max} 3449 (OH), 1781, 1679 (α,β -unsaturated- γ -lactone) cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 0.88 (3H, t, J = 6.4 Hz, H-17), 1.26 (16H, br s, H-9-16), 1.49 (2H, m, H-8), 2.05 (1H, br s, OH-3), 2.77 (2H, m, H-7), 4.67 (1H, dd, J = 2.8, 1.6 Hz, H-5a), 4.89 (1H, dd, J = 2.8, 2.0 Hz, H-5b), 5.11 (1H, br d, J = 1.6 Hz,H-3), 6.69 (1H, td, J = 8.0, 2.0 Hz, H-6); ¹³C NMR (CDCl₃, 100 MHz) & 14.1 (C-17), 22.6 (C-16), 28.3 (C-7), 28.7 (C-8), 28.95, 29.24, 29.34, 29.43, 29.71 (C-9-14), 31.8 (C-15), 66.8 (C-3), 90.2 (C-5), 126.8 (C-2), 151.3 (C-6), 157.5 (C-4), 165.2 (C-1); FABMS m/z 280 [M + H]⁺ (10); HRFABMS m/z 281.2100 (calcd for C₁₇H₂₉O₃, 281.2116).

Acknowledgment. This work was kindly supported by the National Science Council of the Republic of China (NSC89-2314-B-037-045). We are grateful to Prof. Tsutomu Ishikawa (Chiba University, Japan) for assistance with measurement of FABHRMS and COSY spectra.

References and Notes

- (1) Chang, C. E. Lauraceae in Flora of Taiwan, 2nd ed.; Editorial Committee of the Flora of Taiwan: Taipei, 1996; Vol. II, pp 433-499
- (2) Lu, S. T.; Wang, S. J.; Lin, F. S. Yakugaku Zasshi 1969, 89, 1313-1316.
- (3) Sheen, W. S.; Tsai, I. L.; Teng, C. M.; Chen, I. S. Phytochemistry 1994, 36, 213-215.
- (4) Hempfling, R.; Schulten, H. R. Org. Geochem. 1990, 15, 131–145.
 (5) Takeda, K.; Sakurawi, K.; Ishii, H. Tetrahedron 1972, 28, 3757–3766. (6) Chen, I. S.; Lai-Yaun, I. L.; Duh, C. Y.; Tsai, I. L. Phytochemistry 1998 49 745-750
- (7)Private communication: the chemical shift of a methoxy group at δ 3.78 on (2E,3R,4R)-2-(11-dodecenylidene)-3-hydroxy-4-methoxy-4methylbutanolide, mentioned in ref 9 due to type-error, must be corrected as δ 3.38
- (8) Martinez, J. C.; Yoshida, M.; Gottlieb, O. R. Phytochemistry 1981, 20, 459-464.
- Kown, H. C.; Baek, N. I.; Choi, S. U.; Lee, K. R. Chem. Pharm. Bull. (9)**2000**, *48*, 614–616.
- (10) Tsai, I. L.; Lai-Yaun, I. L.; Duh, C. Y.; Jeng, Y. F.; Chen, I. S. Chin. Pharm. J. 2000, 52, 235-239.
- Tanaka, H.; Nakamura, T.; Ichino, K.; Ito, K. Phytochemistry 1989, (11)28, 626-628.
- (12) Hung, C. H. Studies on Cytotoxic and Chemical Constituents of Formosan Lauraceous Lindera communis. M.S. Thesis, Graduate Institute of Natural Products, Kaohsiung Medical University, Taiwan, R.O.C. 2000; p 101. (13) Lee, K. H.; Huang, E. S.; Piantadosi, C.; Pagano, J. S.; Geissman, T.
- A. Cancer Res. 1971, 31, 1649-1654.
- (14) Lee, K. H.; Furukawa, H.; Huang, E. S. J. Med. Chem. 1972, 15, 609-611.
- (15) Lee, K. H.; Imakura, Y.; Sims, D.; McPhail, A. T.; Onan, K. D. J. *Chem. Soc., Chem. Commun.* **1976**, 341–342. (16) Mosmann, T. *J. Immunol. Methods* **1993**, *65*, 55–63.

NP0102298